New CEEDs paper published in Frontiers

Read the full paper HERE
Frontier in Neuroinformatics doi: 10.3389/fninf.2015.00002

Xerxes D. Arsiwalla, Riccardo Zucca, Alberto Betella, Enrique Martinez, David Dalmazzo, Pedro Omedas, Gustavo Deco and Paul F.M.J. Verschure

In order to address the big data challenge of the human brain, researchers at the SPECS lab lead by Paul Verschure, have recently developed BrainX3, a platform for visualization, simulation, analysis and interaction of large data, that combines computational power with human intuition in representing and interacting with large complex networks. BrainX3 serves as a hypotheses generator of big data. As is often the case with complex data, one might not always have a specific hypothesis to start with. Instead, discovering meaningful patterns and associations in big data might be a necessary incubation step for formulating well-defined hypotheses.

On this platform, the researchers reconstructed a large-scale simulation of human brain activity in a 3D virtual reality environment. Using the brain’s known connectivity along with detailed biophysics, the researchers reconstruct neuronal activity of the entire cortex in the resting-state. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. Within the immersive mixed/virtual reality space of BrainX3 users can explore and analysis dynamical activity patterns of brain networks, both at rest or during task, or for discovering of signaling pathways associated to brain function and/or dysfunction or as a tool for virtual neurosurgery.

Besides the dynamics of the resting-state, on BrainX3, the researchers have also simulated neural activity from lesioned brains and that resulting from TMS perturbation. These simulations shed insight on the spatial distribution of activity in the attractor state, how the brain maintains a level of resilience to damage, effects of noise and physiological perturbations. Knowledge of brain activity in these various states is clinically relevant for assessing levels of consciousness in patients with severe brain injury.

CEEDs paper image 1

Image source: Arsiwalla and Zucca et al., 2015

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

  • FET project

  • EC funded

  • Under FP7

  • Project details

    Project number: 258749
    Call (part) identifier: FP7-ICT-2009-5
    Project Start Date: 1st September 2010
    Project Duration: 48 month

%d bloggers like this: